

Growing Markets for Compost-Based Products

MRC Conference May 18, 2017

Cary Oshins Associate Director, USCC

Nature's Way to Grow!

Compost Uses

- Landscaping and home horticulture
- Turf management
- Commercial horticulture
- Agriculture
- Stormwater management and green building applications
- Environmental remediation

1. Home Horticulture

≻Uses

 \circ Planting beds and home gardens

- o Mulches
- o Backfill mix
- Sold through
 - Retail—bagged products
 - Resellers—nurseries, garden centers
 - Intermediaries—landscapers, contractors

Compost Application Rates

Planting Beds

- 3 to 6 cubic yards per 1,000 sq. ft., depending on native soil characteristics (pH, org. matter, texture)
- \circ Incorporate 6" 8" with rototiller
- Backfill Mixes
 - $_{\odot}$ 25% 33% mix of compost and excavated fill
- > Mulches
 - \circ 2" 3" layer around plants and shrubs

From: Field Guide to Compost Use

Planting Bed Establishment

Step 1 – Evenly apply compost in a 1-2" layer (3-6 CY per 1000 ft²)

- Use less with saltsensitive species (e.g. geraniums)
- Watch compost pH levels if using acidic soil – loving plants (e.g. azaleas)

Step 2 – Apply compost evenly over bed, using rakes or shovels

 Step 3 – Rototill compost into planting bed to a depth of 6-8"
 Add pH adjustments (if needed)
 Raise pH – use lime*
 Lower pH – use sulfur

Step 4 – Transplant or seed into the amended soil and press firmly into place

Step 5 – Water

Compost as Backfill Component

Step 1 – Dig a planting hole slightly shallower than the root ball and 2-4 times its width

o "Rough up" the sides of the hole to encourage root penetration

Step 2 – Blend compost with excavated soil • Target is 25-33% compost in blended soil Step 3 – Apply amended soil around rootball • Tamp down to remove

air pockets

Step 4 – Construct a soil berm to help capture and hold water

- Water thoroughly after planting
- Irrigate with 1" water per week until plant is established
- Mulch to conserve water

Mulch volcanoes are not good for trees!

Landscape Mulch

Mulch-applied to surface

 Moisture conservation, weed control, aesthetics

 Composted yard trimmings, Ground wood (often dyed), Coarser-textured composts
 Application rate 2" – 3" layer (6-9 cubic yards/1000 square feet)

Foundation

Dan Herms OSU Case study: effects of mulch on soil microbes, nutrient cycling, and plant health.

Recycled organic wastes:

- Composted yard waste (C:N = 17:1)
- Ground pallets (C:N = 125:1)
- Bare soil control

For full report, contact Dan Herms, The Ohio State University, Wooster, Ohio, herms.2@osu.edu

Recycled organic waste as mulch

Composted mulch

Ground wood pallets

River Birch

Incidence of Phytophthora Root Rot

Compost for Turf Establishment and Maintenance

Potential customers

- Housing builders and their subcontractors
- Playing field managers
 - Schools, clubs, leagues, associations
- Golf Courses
- Industrial parks
- Government entities: Municipalities, parks depts.

Turf Establishment

Step 1

- Spread/blade compost to 1-2"
 - 3 6 CY/1000 ft²
 - 134 268 CY/Acre
- No specialized equipment needed
- Spread other amendments (lime, fertilizer) based on soil tests

PS: Ron Alexander

Step 2: Incorporate

Step 3 and 4: rake and apply seed normally

Step 5: watch grass grow!

Topdressing Turf with Compost

> Annual application along with aeration Cool season grasses – apply in Fall Warm season grasses – apply in Spring > Spread with specialized spreading equipment (examples) > Compost requirements Screened to 3/8" or less \circ Moisture <45% May be amended with sand for flowability

Manufactured Topsoils

- Approx. 30-<u>50</u>% compost (by volume) mixed with soil (rate depends on soil and compost characteristics)
- Mixing can be done with screen

 Alternate loads into screen hopper
 Run first mix back through screen again

 Markets: construction companies, DOTs

Copyright 2004 R. Alexander & Assoc. Inc. All Rights Reserved

Manufactured

Topsoils

Copyright 2004 R. Alexander & Assoc. Inc. All Rights Reserved

Compost use in commercial horticulture

Potting soils
Greenhouses
Planting beds
Field nurseries

Composting Council® Research & Education Foundation

Purposes of Container Mix

- Serve as reservoir of plant nutrients
- Hold water to be plant-available
- Provide adequate porosity for the exchange of gases
- Provide anchorage and support for the plant

Compost Use in Container Mixes

- > Substitute for some or all of peat
- > Beware of shrinkage, high bulk density, high salts
- Must be weed free
- > Usually requires supplemental fertilizer
- Can contribute to root-rot suppression
- Use demos and trials

Compost Use in Greenhouse Culture

Very high value crops
 Can spend more on inputs
 Higher risk
 Greatest compost failures!
 Key to selling to greenhouses:

consistency, consistency

This Phytophthora root rot bioassay helped prove that natural suppression in compost mixes is effective

Spring et al., 1980, Phytopathology 70:1209-1212

Aged Pine Bark 60 - 65%

Composted Biosolids 8 - 12%

Fibrous Sphagnum Peat 15 - 25%

Silica Sand/Expanded Shale 5 - 10%

Compost Use In Commercial Horticulture

> Applications

- \circ Whole fields
- Raised beds, liner beds allow band application
- Can permit continuous culture
- \circ May reduce years to harvest or increase caliper size

Field Nurseries and Liner Beds

Field Nurseries and Liner Beds

Compost Use in Agriculture

- Difficult to generalize due to differences among CROPS, SOILS AND COMPOSTS
- Each grower will decide if benefits (moisture management, fertility, disease suppression, etc) are worth costs (material + delivery + spreading)
- Special case #1: organic farming
 Special case #2: fresh produce

Challenges Using Compost as a Nutrient Source

- 1. Composts slowly mineralize organic nutrients converting them to plant available forms.
- Nutrient availability is often unpredictable especially nitrogen
- 3. Composition of organic sources is highly variable and nutrient ratios do not match crop needs.

What is really in 20 tons of fresh compost?

Quantities in 20 tons of three manure composts produced at the <u>same</u> farm.

Parameter	Compost 1	Compost 2	Compost 3
OM (tons)	8.1	5.2	12.6
Tot. Nit. (lb)	510	415	842
P_2O_5 (lb)	200	88	146
K ₂ O (lb)	385	150	300
C/N	18	14	17

Total N content of Composts

Composts analyzed at Penn State Univ. Ag Analytical Services Laboratory

Compost Use in Organic Agriculture

- Compost must be "approved for use on certified organic farm"
- Approval is done by either farm certifier (e.g., PCO or NOFA) or OMRI ("OMRI Listed")
- Standards for approval set by USDA National Organics Program (NOP)
- CDFA approval required in CA

NOP Standards-Materials

- Allowed feedstocks
 - Plant and animal materials (and their ash)
 - "Natural" non-agricultural materials (e.g., yard debris, food residuals?)
 - Mined substances of low and high solubility
 - Synthetic materials accepted by the OMRI few
- Prohibited feedstocks
 - Biosolids, including ash, grit and screenings from sewage sludge
 - Any synthetic materials not on "national list"
 - Manufactured compostables

NOP Standards-Process

2002 addendum—guidance document to allow greater flexibility

 Achieve 55°C for more than 3 days
 Mixed or managed to ensure all of mixture achieves 55°C

 Vermicompost approved

 Aerobic, moisture and time minimums

Compost Use on Fresh Produce

- FSMA—Food Safety Modernization Act
- Biological Soil Amendments of Animal Origin
 - Manures, non-fecal animal byproducts including animal mortalities, table scraps
- Requires valid pathogen control process
 - Compost meets PFRP standards
 - >131F
 - 3 days in ASP
 - 15 days in turned system
- Must include "adequate curing"

MSU Extension Factsheet available

Composting Council® Research &

Foundation

Compost Use in Stormwater Management & Green Buildings

Research & Education Foundation

Stormwater Management

- Required by Clean Water Act & NPDES
 - National Pollutant Discharge Elimination System
- During construction
 - Erosion and Sediment (E&S) Control
 - Shorter term and higher risk
- Post construction
 - Long term
- Use of approved BMPs "Best Management Practices"

Compost-Based E & S BMPs

Compost Berm and Sock: Pollutant removal
 Compost Blanket: Pollution prevention
 AASHTO Specifications MP-9 and 10
 Need coarse particle size to allow flow, resist movement

 Composted mulch or screened "middles"

30-60% (by wt) passing ¼" screen

Failures Are Easy to See Anywhere

A 3-Dimensional Matrix

Berms are <u>'Geometrically</u> <u>Superior'</u>

High flow rates pond up behind berms or socks

Berms are threedimensional filters

Composting Council® Research & Education Foundation Sediment fills up behind berm

FilterSoxx Don't Fall Over & Can Be Used in Direct Flows

How Compost Blankets Work

Slopes with soil

- Some soil is round
- Rolls downhill
- Speed/mass displaces other soil particles
- Rills are formed
- Speed increases due to channeling of water
- Channels are formed
- Gully erosion

Slopes with compost

- Compost is flat, flexible and meshlike
- 'Knits' together on slopes
- Softer, does not roll
- Similar to a 'wet deck of cards' on the slope
- Porous enough to allow water to pass through slowly

Compost-based Stormwater BMPs

>Stormwater management evolving oDecline in ecosystem functions oFrom simply managing quantity (retention basins) to quality AND quantity >Mimicking nature: focus on infiltration and evapotranspiration

Composting Council® Research & Education Foundation

Compost-Based Stormwater BMPs

➢Bioretention

Bioinfiltration

Soil Quality and depth

>Vegetated roofs

Slope and streambank protection

Bioretention/Bioinfiltration/Rain Garden

Bio-based BMPs

Soil Quality and Depth BMP

 Soils for Salmon outgrowth (WA)
 New construction required to meet minimum OM%

 5% turf
 10% planting beds

Vegetated Roofs

 "Green" roofs
 Part of LID and LEED
 Low volume, high value market

 Planting media 10-20% compost

More compost-based landscape practices

Streambank protection
"Soft" planters
Living walls

Environmental applications

Remediating contaminated soils

 Explosives, heavy metals (eg, lead in urban soils), organic and petroleum products

 Mineland and forestland reclamation
 VOC and odor treatment

 Landfill methane

 Wetland and habitat rehabilitation

Before you market—TEST!

Use and approved lab Follows TMECC, participates in CAP Check for Persistent Herbicides • Esp. if you handle horse or dairy manure 3 USCC factsheets Consider joining Seal of Testing Assurance Many DOT, other specs require STA Certifiedcompost.com

Thanks!

Cary Oshins cary.oshins@compostingcouncil.org

Composting Council®

Nature's Way to Grow!

SAVE THE DATE FOR COMPOST 2018

Game On! Building Sustainable Communities Jan ArTradeshow with over 100 tlanta, GA exhibitors Workshops and technical
Sessions
Equipment Demonstrations
Networking, receptions and fun!

http://compostconference.com/